
SARD’S THEOREM AND WHITNEY EMBEDDING: A GATEWAY

1. Preliminaries

Theorem 1.1. Suppose M is a smooth manifold with or without boundary, and X = (Xα)α∈A is
an indexed open cover of M. Then there exists a smooth partition of unity subordinate to X .

Proof. Suppose M has no boundary. Then each Xα admits a basis of regular coordinate
balls, and therefore X admits a countable, locally finite refinement {Bi}, where {Bi} is
also locally finite. Then there exist φi : B

′
i → Rn fixing φi(Bi) = Bri(0). Define smooth

functions fi

fi =

{
Hi ◦ φi on B′

i

0 on M \Bi

,

where Hi : Rn → R is smooth and positive on Bri(0) and zero elsewhere. Then
f(x) :=

∑
i fi(x) is well-defined and smooth, and gi(x) := fi(x)/f(x) are smooth. It

is straightforward to check 0 ≤ gi ≤ 1, and
∑

i gi ≡ 1.

Reindexing, we set

ψα =
∑

i:B′
i⊆Xα

gi.

After a few further straightforward checks, the result follows. □

One immediate application of partitions of unity is the existence of smooth bump
functions, which will play important roles in the proofs of Sard’s Theorem, the Whitney
Embedding theorem, and the Whitney Approximation Theorem for functions, among
others. They allow us to glue together locally defined smooth functions into global ones,
and serve as a continuous analogue of indicator functions.

Theorem 1.2. Let M be a smooth manifold with or without boundary. For any closed subset A ⊆
M and any open subset U containing A, there exists a smooth bump function for A supported in
U.

Proof. Take a partition of unity ψ1, ψ2 :M → R subordinate to the cover M = X1 ∪X1 :=

U ∪ (M \ A). In particular, ψ1 : M → R satisfies ψ1|A ≡ 1, supp(ψ1) ⊆ U, and 0 ≤ ψ1 ≤ 1

on M. □

In particular, we can realize closed subets of smooth manifolds as level sets of smooth
nonnegative functions f :M → R.

Theorem 1.3. Let M be a smooth manifold. If K is any closed subset of M, there is a smooth
nonnegative function f :M → R such that f−1(0) = K.
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There are several special families of smooth maps, one such being the smooth exhaus-
tion functions.

Definition 1.4. A smooth exhaustion function is a smooth function f : M → R with the
property that the set f−1((−∞, c]), called a sublevel set, is compact for each c ∈ R.

The sublevel sets f−1((−∞, c]) thereby form a compact exhaustion of M. The advan-
tage of such a function is that noncompact manifolds M can be made to everywhere
“look” compact locally. For such a smooth exhaustion function, it also holds that the
sublevel sets f−1(−∞, b]) and f−1([a, b]) are regular domains for a, b regular values for f.

Definition 1.5. A regular domain in M is a properly embedded codimension-0 submani-
fold with boundary, e.g. Hn ⊆ Rn.

For a smooth map F : M → N , it is necessary to investigate the rank of dFp : TpM →
TF (p)N at each p ∈M , as it informs the “non-degeneracy” of our function in local neigh-
borhoods.

Definition 1.6. For F : M → N a smooth map, a point p ∈ M is called a regular point of
F if dFp : TpM → TF (p)N is surjective, and a critical point otherwise.

This definition coincides with our intuition from one-variable calculus, that critical
points are the places where the tangent approximation to a function is constant.

Smooth constant-rank maps serve as a family of smooth maps which admit a canonical
coordinate representation described in the following Rank Theorem. This is a non-linear
analogue of a constant-rank result for linear maps.

Theorem 1.7. Suppose M and N are smooth manifolds of dimensions m and n, respectively, and
F : M → N is a smooth map with constant rank r. For each p ∈ M, there exist smooth charts
(U,φ) containing p and (V, ϕ) containing F (p) for which F has the coordinate representation

F̂ (x1, . . . , xr, xr+1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0).

Proof. Reduce to the case F : U ⊆ Rm → V ⊆ Rn. □

We review another result which identifies smooth constant-rank maps as an important
source of submanifolds.

Theorem 1.8. Let M and N be smooth manifolds, and let F : M → N be a smooth map with
constant rank r. Then each level set of F is a properly embedded submanifold of codimension r in
M.

Proof. Write m = dim(M), n = dim(N), and k = m − r. For each p ∈ F−1(c) and chart
(U,φ) containing p, F−1(c) ∩ U is the slice

{(x1, . . . , xr, xr+1, . . . , xm) ∈ U : x1 = · · · = xr = 0}.

Hence F−1(c) satisfies the local k-slice condition, and the result follows by F−1(c) closed.
□
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We recall the notion of a negligible set from measure theory, and extend this notion to
abstract manifolds in the very natural way via charts.

Definition 1.9. For M a smooth n-manifold with or without boundary, A ⊆ M has
measure zero in M if for every smooth chart (U,φ) for M, the subset φ(A ∩ U) ⊂ Rn has
n-dimensional measure zero.

The following is a techncal lemma which will assist in the proof of Sard’s Theorem to
come. It lifts “thinness” of compact sets on (n − 1)-dimensional slices to n-dimensional
space.

Lemma 1.10. Let A ⊆ Rn be a compact subset whose intersection with {c} ×Rn−1 has (n− 1)-
dimensional measure zero for every c ∈ R. Then A has n-dimensional measure zero.

2. Sard’s Theorem: Statement, Proof, Applications

Proven in full generality by Arthur Sard in 1942, Sard’s Theorem is a remarkable result
underlying celebrated theorems such as the Whitney Embedding Theorem, Parametric
Transversality Theorem, and Transversality Homotopy Theorem which study embed-
dings and intersections of submanifolds.

Theorem 2.1. Suppose M and N are smooth manifolds with or without boundary and F :M →
M is a smooth map. Then the set of critical values of F has measure zero in N.

Proof. (Sketch) Set m = dim(M), n = dim(N). We proceed by induction on m ∈ Z≥0.

Denote C the collection of critical points of F.
When m = 0, the collection of critical points is either empty or countable. In either

case, F (C) has measure zero in N.

Let m > 0. Covering M by countably many charts, we may reduce to the case F : U ⊆
Rm → Rn. Now, define the following sets:

Ck := {x ∈ C : all kth order partical derivatives of F vanish at x},

where C ⊇ C1 ⊇ C2 ⊇ . . . .

Each Ck is closed by continuity. Next, we show the following:
(1) F (C \ C1) ⊆ N has measure zero,
(2) F (Ck \ Ck+1) has measure zero for all k, and
(3) F (Ck) has measure zero for k sufficiently large.

Toward (1), pick any a ∈ C \ C1, and without loss of generality let ∂F 1/∂x1 be non-
zero at a. Then we may change coordinates in some neighborhood Va from (x1, . . . , xm)

to (F 1, x2, . . . , xm). In this new coordinate representation, dF takes the form(
1 0

∗ ∂F i/∂xj

)
,

where (∂F i/∂xj)ij has rank < n − 1 on C ∩ V a. The previous technical lemma together
with an application of the induction hyptohesis establishes that F (C ∩V a) and therefore
F (U ∩ C) has measure zero.
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Now to prove (2), fix a ∈ Ck, and let y : U → R be a kth partial derivative of F which
admits a non-zero partial derivative at a. Then we again obtain a neighborhood Va ∋ a

consisting of regular points. Then Ck ∩ Va ⊆ y−1(0) ∩ Va, hence F (Ck ∩ Va) constitute
critical values of F |y0∩Va

, which by the induction hypothesis have measure zero. Again,
countably many F (Ck ∩ Va) cover F (Ck \ Ck+1).

Lastly, we establish (3). Roughly, we can bound the absolute value of all (k + 1)st
partial derivatives of F in any closed cube E. Subdividing a E into sufficiently small
subcubes Ei bounds–by a version of Taylor’s theorem–F (Ck ∩ Ei) within open balls, the
sum of whose volumes may be made negligible.

Since F (C) is comprised of the above sets (of which there are countably many), the
result follows.

□

We proceed to a few interesting applications and further comments. Two corollaries
include the following, which incorporate dimension.

Corollary 2.2. Suppose M and N are smooth manifolds with or without boundary and F :M →
N is a smooth map. If dim(M) < dim(N), then F (M) ⊆ N has measure zero.

Proof. In this case, every point in M is critical for F. □

Corollary 2.3. Suppose M is a smooth manifold with or without boundary, and S ⊆ M is an
immersed submanifold with or without boundary. If dim(S) < dim(M), then S ⊆ has measure
zero.

Proof. The above follows from the previous corollary applied to the inclusion i : S →
M. □

Sard’s theorem is also used to establish the existence of Morse functions, or functions
F : M → R all of whose critical points are non-degenerate. Such functions carry rich
topological information.

3. The Whitney Embedding Theorem: Statement, Proof, Applications

Established in the 1930s by Hassler Whitney, the Whitney Embedding Theorem is a
fundamental result in differential topology boasting wide application. It confirms the
natural impulse to visualize abstract manifolds as embedded in a Euclidean space.

Theorem 3.1. Every smooth n-manifold with or without boundary admits a proper smooth em-
bedding into R2n+1.

Proof. We will first show that M admits a smooth embedding into some Euclidean space.
Suppose M is compact. Then M admits a finite cover {B1, . . . , Bm} from which we
may generate coordinate charts (B′

i, φi), B
′
i ⊇ Bi and φi : B

′
i → Rn. For smooth bump

functions ρi :M → R, ρi|Bi
≡ 1, consider the smooth map F :M → Rnm+m given by

F (p) = (ρ1φ1(p), . . . , ρmφm(p), ρ1(p), . . . , ρm(p)) .
4



By M compact, it suffices to show F is an injective, smooth immersion. Injectivity follows
by {B1, . . . , Bm} a cover for M and the φi homeomorphisms. The immersion property
follows by {B1, . . . , Bm} a cover for M and d(ρiφi)p = d(φi)p in some neighborhood of
any p ∈ Bi, which is injective by φi a diffeomorphism on Bi.

Suppose M is non-compact. Take a smooth exhaustion function f : M → R of M,

and, for regular values i < ai < bi < i + 1 guaranteed for all i ∈ Z by Sard’s theorem,
define subsets D0 = f−1((−∞, 1]), Di = f−1([i, i + 1]), E1 = f−1((−∞, a1]), and Ei =

f−1([ai−1, bi+1]). Notice that Di ⊆ Int(Ei). The argument above guarantees an embedding
φi : Ei → Rnm+m. Then let ρi : M → R be a smooth bump function satisfying ρi|Di

≡ 1,

supp(ρi) ⊆ Int(Ei). Define

F (p) =

(∑
i even

ρi(p)φi(p),
∑
i odd

ρi(p)φi(p), f(p)

)
.

This function is easily seen to be smooth, proper, injective, and finally an immersion.
The result follows.

□

We proceed to a discussion of the applications of the Whitney Embedding Theorem.
A first application is to the Whitney Approximation Theorem, which asserts that contin-
uous maps f : M → N are homotopic to smooth maps. That is, they may be deformed
continuously into smooth maps. The Whitney Embedding Theorem will also be used to
establish the existence of a complete Riemannian metric on every connected smooth man-
ifold. Such a metric enriches the underlying smooth manifold with a geometry, making
familiar notions like length, angle, and distance meaningful. The theory of Riemann-
ian geometry is especially relevant for adjacent disciplines like physics; for example, a
certain generalization of Riemannian metrics plays a central role in general relativity the-
ory. By situating abstract manifolds into a tangible Euclidean setting, Whitney’s theorem
broadly facilitates a dialogue between abstract and physical theory.
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